PROBLEM SET 9

JIAHAO HU

Problem 1. Let Gy(z) = (4wt)~"/2e¢~1#*/4  and if f € S'(R™), let u(x,t) =
f *Gi(x). Prove
(1) w satisfies (8y — A)u =0 on R™ x (0,00) and u(-,t) = f in 8" ast — 0.
(2) If f is a tempered function, then u(x,t) — f(x) a.e. ast — 0.

Sketch of proof. (1) We notice Gi(z) = t%G(tl%) where G(z) =

(2)

=2
(471';”/2 e %
is the well-known Gaussian distribution, so G; is an approximate identity.
Hence u = f+ Gy — fin S’ as t — oo. To show u satisfies the equation,
we notice (0 — A)f x Gy = f x (0¢ — A)Gy, therefore it suffices to show
(0y — A)Gy = 0 which is a straightforward calculation.

This follows from the observation that G; is an approximate identity.

(]

Problem 2. Let W; be the inverse Fourier transform of (2n|&]) =1 sin(27|€[t). Prove
the following.

(1) If n=1, Wy = 3x(~t,1)
(2) If n = 3, let or denote surface measure on the sphere |x| = R. Then

or(€) = 2R[¢| " sin(27 R|E|), and hence Wy = (47t) Loy,

(3) If n =2, think of £ € R? as an element of R? x {0} C R3. Transform the

Proof.

integral
2Rsin(2wR|¢])

= e 2o p (x
|§| /|x|_R R( )

as an integral over the disc Dr = {y : |y| < R} in R%. Conclude that for
n=2,

Wi(w) = (2m) 7 (¢ = [#) "2 xp, (1),
(1) The Fourier transform of Ly(—t,t) is

t "
1/ o 2mike gy _ L [em2miEnt sin(2r[]t)
2m[¢]

2/, 4mi
We note 6 (€) is radial, due to the symmetry of sphere. To elaborate, for
any p € SO(3) we have

on(p) = [ = dan(o) = [ €< dn(o)

But since o is invariant under SO(3), we have dog(z) = dog(pzx), hence

Gr(p€) = oRr(€§) for all p € SO(3), i.e. o is radial. This means 6r(§) =

f(€]) for some f. There are then several ways to determine f, one is

to realize f(|¢]) = dr((|£],0,0)) and use sphere coordinates to explicitly

calculate f. Another way is to realize 6r has to satisfy a differential
1
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equation, and hence so does f, then solve for f. Any natural differen-
tial equation 6 satisfies must be symmetric under SO(3), and the most
natural differential operator invariant under SO(3) is the Laplacian. So
let’s try to compute Adr. We have dyor(§) = [ —2mizge” "% do R (x),
and 026 (&) = [ —4r?zie ™" doR(z), therefore

Abp(€) = / 4?3 e o (1) = —An?R25 R (E).

Now the Laplacian under spherical coordinate and that 6g(&) = f(|¢]) is
radial, we have AG (&) = 192 (rf) where r = [¢|. So f satisfies the ordinary
differential equation

d—2f+2if+4 R*rf =0
TdTQ dr 7 r; = u.

It is easy to verify f(r) = 2Rr~!sin(27 Rr) satisfy the equation, and hence
is the unique solution by standard ODE theory. This proves dg(§) =
7€) = 2RIE[~ sin(2r Rlg]).

(3) We write z = (y, 2) for y = (y1,y2) € R? and z € R where 2? — [yl?.

So doalx) = /020w T (01007 1y = Ly, Th T

, _ R .
/ 6727sz-§d0R(z) _ 2/ 672w1y~§ﬁdy — hR
jo|=R lyI<R R? — |yl
where hr(y) = \/Riglf—WXDR and the factor 2 reflects the symmetry of

northern and southern hemisphere. So Wx = (2r|¢])~ ! sin(27|¢|R) = %ﬁR,
therefore Wx(y) = (27) 1 (R% — |y|?) "2 xpp (1)

(]
Problem 3. Solve (9, — 8%)u = 0 on (a,b) x (0,00) with boundary conditions
u(z,0) = f(z) on (a, ) (a,t u(b,t) =0 fort > 0. Solve this again, but with

) =
boundary condition u(a t) = u(b,t) = 0 replaced by Oyu(a,t) = dyu(b,t) = 0.

Solution. We may assume a = 0,b = % Since f(0) = f(1/2) = 0, we may extend
f to an odd function with period 1 on R. Then f has Fourier series f(z) =
>0 | by sin(2wnx). Assume solution u(z,t) has the form Y v, (t)sin(27rnz), then

n=1

since (9; — 02)u = 0 we get v}, (t) = —4n*n?v,(t) and v, (0) = b, for all n € N, by
comparing Fourier coefficients. Therefore v, (t) = bpe 47"t and

i 2,2
= Z bpe” 4™ "t sin(2nnr).

n=1

Note that our logic here is in fact to first reasonably guess a potential solution, so
it remains to verify the above one is indeed a solution. We need to check uniform
convergence and ability to differentiate the series term by term. In the case f is
smooth (C? or even weaker regularity is enough), this is not a problem, since the
Fourier coefficients of u is the Fourier coefficients of f multiplied by a fast decreasing
function e~47""’t, Similarly in the second situation we extend f to an even function
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and write f(z) = 9 + >, 5, an cos(2mnz), then the solution is

u(z,t) = % + Z ane 4T cos(2mnx).
n>1

O

Problem 4. If i is a positive Borel measure on T with u(T') = 1, show that
(k)| < 1 for all k # 0 unless p is a conver combination of the point masses at
0,m~Y, ..., (m—1)m~! for some m € N, in which case fi(km) =1 for all k € Z.
Proof. Let’s first deal with the case where there exists m # 0 so that ji(m) = 1.
Notice that for any measurable set A we have

1:/ e—2ﬂimxdu(x) S ‘/ e—QﬂimmdM(x)|+| e—2ﬂimmdu(x)|
A T1-A

’]rl
< [ e mmeau(e) + / |2 () = p(A) + p(TH — A) = 1
A TI—A

Hence | [, e™?™™*du(z)| = p(A) for all A. If p(A) # 0, then we may write
fae 2 medp(z) = %4 p(A) for some 64 € [0,27). Now suppose A, B are dis-
joint measurable with positive measures, then we claim 6, = 0. Indeed, we
have ¥4y (A) + €2 u(B) = eP4vuB (A U B), therefore |e?4u(A) + €8 u(B)| =
le?4vs (AU B)| = u(A) + u(B), or equivalently |e??4~%95 y(A) + u(B)| = u(A) +
w(B), it then follows 64 = 6p since u(A),u(B) > 0. Moreover we see that
Oaup =04 = 03p.

Next we show if zq € suppu, then e 2% — 1. Suppose e~ 27im¥o £ |,
then sin(2mimazg) # 0, we may assume sin(2rmaz) > 2¢ > 0. Let U be an open
neighborhood of xy on which sin(27rmz) > € > 0. We would like to show zy ¢
supp p. Suppose for contradiction xg € supp p, we have pu(U) > 0. We may shrink
U so that u(U) < 1, otherwise supppu = {zo} and thus 1 = j(m) = e 7m0
which is impossible. So now both U and T! — U have positive measure, by previous
discussion, we see 0y = Opi_y = O = 0, i.e. [ e ™ dp(x) = p(U). However
the imaginary part of [, e ?™™*du(x) is — [, sin(2rma)du(z) < —eu(U) < 0.
Contradiction. This proves suppu C {0,1/m,...,(m —1)/m}.

So p must be positive linear combination of point masses at 0,1/m,...,(m —
1)/m, and the sum of coefficients is u(T') = 1. In this case for z € supp u,
e~Imime — | = e=2mikmz 55 we have ji(km) = 1 for all k € Z. This finishes the
proof for the case fi(m) = 1.

In general, if |i(m)| = 1, then (m) = €2™%. Let v = e~2™*y, then 0(m) = 1.
Thus v is a convex combination of point masses at 0,1/m,...,(m — 1)/m and
v(km) = 1 for all k € Z. Therefore 4 is a convex combination of point masses at
s,1/m+s,...(m—1)/m+ s and p(km) = e>™* for all k € Z.

[

Problem 5. Show that if A(R™) is the set of finite linear combinations of point
masses on R™, then A(R™) is vaguely dense in M(R™).

Proof. We first note C.(R™) is contained in the vague closure of A(R™), because
for any f € C.,g € Cp we have [ fg is approximated by Riemann sum, so f is the
vague limit of linear combination of point masses at the centers of cubes that covers
supp(f). Therefore, the vague closure of C.(R™) is contained in the vague closure
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of A(R™). It remains to show C.(R") is dense in M (R™). This can be proved in two
steps. First, we notice C,.(R™) is L!-dense hence vaguely dense in L'(R™) thanks
to Holder inequality. Second L!(R") is vaguely dense in M(R™), because for any
pw € M(R™), p is the limit of p x ¢, € L' for approximate identity {¢;} since for
any g € Co(R™)

| / / o — y)du(y)dm(z] < lglloellérllilul < oo

and thus by Fubini theorem

[o@) [ onte—yiautwyina@) = [ [ s@onte - yamaants) = [ g+ b

Now that g € Cy hence uniformly continuous, g * (;St is uniformly convergent to g,
so [g(px¢r)dm — [ gdp ast — 0. O



