
PROBLEM SET 9

JIAHAO HU

Problem 1. Let Gt(x) = (4πt)−n/2e−|x|2/4t, and if f ∈ S ′(Rn), let u(x, t) =
f ∗Gt(x). Prove

(1) u satisfies (∂t −∆)u = 0 on Rn × (0,∞) and u(·, t) → f in S ′ as t → 0.
(2) If f is a tempered function, then u(x, t) → f(x) a.e. as t → 0.

Sketch of proof. (1) We notice Gt(x) =
1

t
n
2
G( x

t1/2
) where G(x) = 1

(4π)n/2 e
− |x|2

4

is the well-known Gaussian distribution, so Gt is an approximate identity.
Hence u = f ∗ Gt → f in S′ as t → ∞. To show u satisfies the equation,
we notice (∂t − ∆)f ∗ Gt = f ∗ (∂t − ∆)Gt, therefore it suffices to show
(∂t −∆)Gt = 0 which is a straightforward calculation.

(2) This follows from the observation that Gt is an approximate identity.
□

Problem 2. Let Wt be the inverse Fourier transform of (2π|ξ|)−1 sin(2π|ξ|t). Prove
the following.

(1) If n = 1, Wt =
1
2χ(−t, t)

(2) If n = 3, let σR denote surface measure on the sphere |x| = R. Then
σ̂R(ξ) = 2R|ξ|−1 sin(2πR|ξ|), and hence Wt = (4πt)−1σt.

(3) If n = 2, think of ξ ∈ R2 as an element of R2 × {0} ⊂ R3. Transform the
integral

2R sin(2πR|ξ|)
|ξ| =

!

|x|=R

e−2πix·ξdσR(x)

as an integral over the disc DR = {y : |y| ≤ R} in R2. Conclude that for
n = 2,

Wt(x) = (2π)−1(t2 − |x|2)− 1
2χDt(x).

Proof. (1) The Fourier transform of 1
2χ(−t, t) is

1

2

! t

−t

e−2πiξxdx = − 1

4πiξ
[e−2πiξx]t−t =

sin(2π|ξ|t)
2π|ξ| .

(2) We note σ̂R(ξ) is radial, due to the symmetry of sphere. To elaborate, for
any ρ ∈ SO(3) we have

σ̂R(ρξ) =

!
e−2πix·ρξdσR(x) =

!
e−2πi(ρx)·ξdσR(x)

But since σR is invariant under SO(3), we have dσR(x) = dσR(ρx), hence
σ̂R(ρξ) = σ̂R(ξ) for all ρ ∈ SO(3), i.e. σ̂R is radial. This means σ̂R(ξ) =
f(|ξ|) for some f . There are then several ways to determine f , one is
to realize f(|ξ|) = σ̂R((|ξ|, 0, 0)) and use sphere coordinates to explicitly
calculate f . Another way is to realize σ̂R has to satisfy a differential
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equation, and hence so does f , then solve for f . Any natural differen-
tial equation σ̂R satisfies must be symmetric under SO(3), and the most
natural differential operator invariant under SO(3) is the Laplacian. So
let’s try to compute ∆σ̂R. We have ∂kσ̂R(ξ) =

"
−2πixke

−2πix·ξdσR(x),

and ∂2
kσ̂R(ξ) =

"
−4π2x2

ke
−2πix·ξdσR(x), therefore

∆σ̂R(ξ) =

!
−4π2|x|2e−2πix·ξdσR(x) = −4π2R2σ̂R(ξ).

Now the Laplacian under spherical coordinate and that σ̂R(ξ) = f(|ξ|) is
radial, we have∆σ̂R(ξ) =

1
r∂

2
r (rf) where r = |ξ|. So f satisfies the ordinary

differential equation

r
d2

dr2
f + 2

d

dr
f + 4π2R2rf = 0.

It is easy to verify f(r) = 2Rr−1 sin(2πRr) satisfy the equation, and hence
is the unique solution by standard ODE theory. This proves σ̂R(ξ) =
f(|ξ|) = 2R|ξ|−1 sin(2πR|ξ|).

(3) We write x = (y, z) for y = (y1, y2) ∈ R2 and z ∈ R where z2 = R2 − |y|2.
So dσR(x) =

#
(∂z/∂y1)2 + (∂z/∂y2)2 + 1dy = R√

R2−|y|2
dy. Therefore

!

|x|=R

e−2πix·ξdσR(x) = 2

!

|y|≤R

e−2πiy·ξ R#
R2 − |y|2

dy = ĥR

where hR(y) = 2R√
R2−|y|2

χDR
and the factor 2 reflects the symmetry of

northern and southern hemisphere. So ŴR = (2π|ξ|)−1 sin(2π|ξ|R) = π
R ĥR,

therefore WR(y) = (2π)−1(R2 − |y|2)− 1
2χDR

(y).
□

Problem 3. Solve (∂t − ∂2
x)u = 0 on (a, b) × (0,∞) with boundary conditions

u(x, 0) = f(x) on (a, b), u(a, t) = u(b, t) = 0 for t > 0. Solve this again, but with
boundary condition u(a, t) = u(b, t) = 0 replaced by ∂xu(a, t) = ∂xu(b, t) = 0.

Solution. We may assume a = 0, b = 1
2 . Since f(0) = f(1/2) = 0, we may extend

f to an odd function with period 1 on R. Then f has Fourier series f(x) =
$∞

n=1 bn sin(2πnx). Assume solution u(x, t) has the form
∞$

n=1
vn(t) sin(2πnx), then

since (∂t − ∂2
x)u = 0 we get v′n(t) = −4π2n2vn(t) and vn(0) = bn for all n ∈ N+ by

comparing Fourier coefficients. Therefore vn(t) = bne
−4π2n2t and

u(x, t) =

∞%

n=1

bne
−4π2n2t sin(2πnx).

Note that our logic here is in fact to first reasonably guess a potential solution, so
it remains to verify the above one is indeed a solution. We need to check uniform
convergence and ability to differentiate the series term by term. In the case f is
smooth (C2 or even weaker regularity is enough), this is not a problem, since the
Fourier coefficients of u is the Fourier coefficients of f multiplied by a fast decreasing

function e−4π2n2t. Similarly in the second situation we extend f to an even function
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and write f(x) = a0

2 +
$

n≥1 an cos(2πnx), then the solution is

u(x, t) =
a0
2

+
%

n≥1

ane
−4π2n2t cos(2πnx).

□

Problem 4. If µ is a positive Borel measure on T1 with µ(T1) = 1, show that
|µ̂(k)| < 1 for all k ∕= 0 unless µ is a convex combination of the point masses at
0,m−1, ..., (m− 1)m−1 for some m ∈ N, in which case µ̂(km) = 1 for all k ∈ Z.

Proof. Let’s first deal with the case where there exists m ∕= 0 so that µ̂(m) = 1.
Notice that for any measurable set A we have

1 =

!

T1

e−2πimxdµ(x) ≤ |
!

A

e−2πimxdµ(x)|+ |
!

T1−A

e−2πimxdµ(x)|

≤
!

A

|e−2πimx|dµ(x) +
!

T1−A

|e−2πimx|dµ(x) = µ(A) + µ(T1 −A) = 1

Hence |
"
A
e−2πimxdµ(x)| = µ(A) for all A. If µ(A) ∕= 0, then we may write"

A
e−2πimxdµ(x) = eiθAµ(A) for some θA ∈ [0, 2π). Now suppose A,B are dis-

joint measurable with positive measures, then we claim θA = θB . Indeed, we
have eiθAµ(A) + eiθBµ(B) = eiθA∪Bµ(A ∪ B), therefore |eiθAµ(A) + eiθBµ(B)| =
|eiθA∪Bµ(A ∪ B)| = µ(A) + µ(B), or equivalently |eiθA−iθBµ(A) + µ(B)| = µ(A) +
µ(B), it then follows θA = θB since µ(A), µ(B) > 0. Moreover we see that
θA∪B = θA = θB .

Next we show if x0 ∈ suppµ, then e−2πimx0 = 1. Suppose e−2πimx0 ∕= 1,
then sin(2πimx0) ∕= 0, we may assume sin(2πmx) ≥ 2ε > 0. Let U be an open
neighborhood of x0 on which sin(2πmx) ≥ ε > 0. We would like to show x0 /∈
suppµ. Suppose for contradiction x0 ∈ suppµ, we have µ(U) > 0. We may shrink
U so that µ(U) < 1, otherwise suppµ = {x0} and thus 1 = µ̂(m) = e−2πimx0

which is impossible. So now both U and T1−U have positive measure, by previous
discussion, we see θU = θT1−U = θT1 = 0, i.e.

"
U
e−2πimxdµ(x) = µ(U). However

the imaginary part of
"
U
e−2πimxdµ(x) is −

"
U
sin(2πmx)dµ(x) ≤ −εµ(U) < 0.

Contradiction. This proves suppµ ⊂ {0, 1/m, . . . , (m− 1)/m}.
So µ must be positive linear combination of point masses at 0, 1/m, . . . , (m−

1)/m, and the sum of coefficients is µ(T1) = 1. In this case for x ∈ suppµ,
e−2πimx = 1 = e−2πikmx, so we have µ̂(km) = 1 for all k ∈ Z. This finishes the
proof for the case µ̂(m) = 1.

In general, if |µ̂(m)| = 1, then µ̂(m) = e2πis. Let ν = e−2πisµ, then ν̂(m) = 1.
Thus ν is a convex combination of point masses at 0, 1/m, . . . , (m − 1)/m and
ν̂(km) = 1 for all k ∈ Z. Therefore µ is a convex combination of point masses at
s, 1/m+ s, . . . (m− 1)/m+ s and µ(km) = e2πis for all k ∈ Z.

□

Problem 5. Show that if ∆(Rn) is the set of finite linear combinations of point
masses on Rn, then ∆(Rn) is vaguely dense in M(Rn).

Proof. We first note Cc(Rn) is contained in the vague closure of ∆(Rn), because
for any f ∈ Cc, g ∈ C0 we have

"
fg is approximated by Riemann sum, so f is the

vague limit of linear combination of point masses at the centers of cubes that covers
supp(f). Therefore, the vague closure of Cc(Rn) is contained in the vague closure
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of ∆(Rn). It remains to show Cc(Rn) is dense in M(Rn). This can be proved in two
steps. First, we notice Cc(Rn) is L1-dense hence vaguely dense in L1(Rn) thanks
to Holder inequality. Second L1(Rn) is vaguely dense in M(Rn), because for any
µ ∈ M(Rn), µ is the limit of µ ∗ φt ∈ L1 for approximate identity {φt} since for
any g ∈ C0(Rn)

|
!

g(x)

!
φt(x− y)dµ(y)dm(x| ≤ ‖g‖∞‖φt‖1‖µ‖ < ∞

and thus by Fubini theorem
!

g(x)

!
φt(x− y)dµ(y)dm(x) =

! !
g(x)φt(x− y)dm(x)dµ(y) =

!
g ∗ φ̃tdµ.

Now that g ∈ C0 hence uniformly continuous, g ∗ φ̃t is uniformly convergent to g,
so

"
g(µ ∗ φt)dm →

"
gdµ as t → 0. □


