PROBLEM SET 9

JIAHAO HU

Problem 1. Let $G_{t}(x)=(4 \pi t)^{-n / 2} e^{-|x|^{2} / 4 t}$, and if $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, let $u(x, t)=$ $f * G_{t}(x)$. Prove
(1) u satisfies $\left(\partial_{t}-\Delta\right) u=0$ on $\mathbb{R}^{n} \times(0, \infty)$ and $u(\cdot, t) \rightarrow f$ in \mathcal{S}^{\prime} as $t \rightarrow 0$.
(2) If f is a tempered function, then $u(x, t) \rightarrow f(x)$ a.e. as $t \rightarrow 0$.

Sketch of proof. (1) We notice $G_{t}(x)=\frac{1}{t^{\frac{n}{2}}} G\left(\frac{x}{t^{1 / 2}}\right)$ where $G(x)=\frac{1}{(4 \pi)^{n / 2}} e^{-\frac{|x|^{2}}{4}}$ is the well-known Gaussian distribution, so G_{t} is an approximate identity. Hence $u=f * G_{t} \rightarrow f$ in S^{\prime} as $t \rightarrow \infty$. To show u satisfies the equation, we notice $\left(\partial_{t}-\Delta\right) f * G_{t}=f *\left(\partial_{t}-\Delta\right) G_{t}$, therefore it suffices to show $\left(\partial_{t}-\Delta\right) G_{t}=0$ which is a straightforward calculation.
(2) This follows from the observation that G_{t} is an approximate identity.

Problem 2. Let W_{t} be the inverse Fourier transform of $(2 \pi|\xi|)^{-1} \sin (2 \pi|\xi| t)$. Prove the following.
(1) If $n=1, W_{t}=\frac{1}{2} \chi(-t, t)$
(2) If $n=3$, let σ_{R} denote surface measure on the sphere $|x|=R$. Then $\hat{\sigma}_{R}(\xi)=2 R|\xi|^{-1} \sin (2 \pi R|\xi|)$, and hence $W_{t}=(4 \pi t)^{-1} \sigma_{t}$.
(3) If $n=2$, think of $\xi \in \mathbb{R}^{2}$ as an element of $\mathbb{R}^{2} \times\{0\} \subset \mathbb{R}^{3}$. Transform the integral

$$
\frac{2 R \sin (2 \pi R|\xi|)}{|\xi|}=\int_{|x|=R} e^{-2 \pi i x \cdot \xi} d \sigma_{R}(x)
$$

as an integral over the disc $D_{R}=\{y:|y| \leq R\}$ in \mathbb{R}^{2}. Conclude that for $n=2$,

$$
W_{t}(x)=(2 \pi)^{-1}\left(t^{2}-|x|^{2}\right)^{-\frac{1}{2}} \chi_{D_{t}}(x)
$$

Proof. (1) The Fourier transform of $\frac{1}{2} \chi(-t, t)$ is

$$
\frac{1}{2} \int_{-t}^{t} e^{-2 \pi i \xi x} d x=-\frac{1}{4 \pi i \xi}\left[e^{-2 \pi i \xi x}\right]_{-t}^{t}=\frac{\sin (2 \pi|\xi| t)}{2 \pi|\xi|}
$$

(2) We note $\hat{\sigma}_{R}(\xi)$ is radial, due to the symmetry of sphere. To elaborate, for any $\rho \in S O(3)$ we have

$$
\hat{\sigma}_{R}(\rho \xi)=\int e^{-2 \pi i x \cdot \rho \xi} d \sigma_{R}(x)=\int e^{-2 \pi i(\rho x) \cdot \xi} d \sigma_{R}(x)
$$

But since σ_{R} is invariant under $S O(3)$, we have $d \sigma_{R}(x)=d \sigma_{R}(\rho x)$, hence $\hat{\sigma}_{R}(\rho \xi)=\hat{\sigma}_{R}(\xi)$ for all $\rho \in S O(3)$, i.e. $\hat{\sigma}_{R}$ is radial. This means $\hat{\sigma}_{R}(\xi)=$ $f(|\xi|)$ for some f. There are then several ways to determine f, one is to realize $f(|\xi|)=\hat{\sigma}_{R}((|\xi|, 0,0))$ and use sphere coordinates to explicitly calculate f. Another way is to realize $\hat{\sigma}_{R}$ has to satisfy a differential
equation, and hence so does f, then solve for f. Any natural differential equation $\hat{\sigma}_{R}$ satisfies must be symmetric under $S O(3)$, and the most natural differential operator invariant under $S O(3)$ is the Laplacian. So let's try to compute $\Delta \hat{\sigma}_{R}$. We have $\partial_{k} \hat{\sigma}_{R}(\xi)=\int-2 \pi i x_{k} e^{-2 \pi i x \cdot \xi} d \sigma_{R}(x)$, and $\partial_{k}^{2} \hat{\sigma}_{R}(\xi)=\int-4 \pi^{2} x_{k}^{2} e^{-2 \pi i x \cdot \xi} d \sigma_{R}(x)$, therefore

$$
\Delta \hat{\sigma}_{R}(\xi)=\int-4 \pi^{2}|x|^{2} e^{-2 \pi i x \cdot \xi} d \sigma_{R}(x)=-4 \pi^{2} R^{2} \hat{\sigma}_{R}(\xi)
$$

Now the Laplacian under spherical coordinate and that $\hat{\sigma}_{R}(\xi)=f(|\xi|)$ is radial, we have $\Delta \hat{\sigma}_{R}(\xi)=\frac{1}{r} \partial_{r}^{2}(r f)$ where $r=|\xi|$. So f satisfies the ordinary differential equation

$$
r \frac{d^{2}}{d r^{2}} f+2 \frac{d}{d r} f+4 \pi^{2} R^{2} r f=0
$$

It is easy to verify $f(r)=2 R r^{-1} \sin (2 \pi R r)$ satisfy the equation, and hence is the unique solution by standard ODE theory. This proves $\hat{\sigma}_{R}(\xi)=$ $f(|\xi|)=2 R|\xi|^{-1} \sin (2 \pi R|\xi|)$.
(3) We write $x=(y, z)$ for $y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$ and $z \in \mathbb{R}$ where $z^{2}=R^{2}-|y|^{2}$. So $d \sigma_{R}(x)=\sqrt{\left(\partial z / \partial y_{1}\right)^{2}+\left(\partial z / \partial y_{2}\right)^{2}+1} d y=\frac{R}{\sqrt{R^{2}-|y|^{2}}} d y$. Therefore

$$
\int_{|x|=R} e^{-2 \pi i x \cdot \xi} d \sigma_{R}(x)=2 \int_{|y| \leq R} e^{-2 \pi i y \cdot \xi} \frac{R}{\sqrt{R^{2}-|y|^{2}}} d y=\hat{h_{R}}
$$

where $h_{R}(y)=\frac{2 R}{\sqrt{R^{2}-|y|^{2}}} \chi_{D_{R}}$ and the factor 2 reflects the symmetry of northern and southern hemisphere. So $\hat{W}_{R}=(2 \pi|\xi|)^{-1} \sin (2 \pi|\xi| R)=\frac{\pi}{R} \hat{h}_{R}$, therefore $W_{R}(y)=(2 \pi)^{-1}\left(R^{2}-|y|^{2}\right)^{-\frac{1}{2}} \chi_{D_{R}}(y)$.

Problem 3. Solve $\left(\partial_{t}-\partial_{x}^{2}\right) u=0$ on $(a, b) \times(0, \infty)$ with boundary conditions $u(x, 0)=f(x)$ on $(a, b), u(a, t)=u(b, t)=0$ for $t>0$. Solve this again, but with boundary condition $u(a, t)=u(b, t)=0$ replaced by $\partial_{x} u(a, t)=\partial_{x} u(b, t)=0$.

Solution. We may assume $a=0, b=\frac{1}{2}$. Since $f(0)=f(1 / 2)=0$, we may extend f to an odd function with period 1 on \mathbb{R}. Then f has Fourier series $f(x)=$ $\sum_{n=1}^{\infty} b_{n} \sin (2 \pi n x)$. Assume solution $u(x, t)$ has the form $\sum_{n=1}^{\infty} v_{n}(t) \sin (2 \pi n x)$, then since $\left(\partial_{t}-\partial_{x}^{2}\right) u=0$ we get $v_{n}^{\prime}(t)=-4 \pi^{2} n^{2} v_{n}(t)$ and $v_{n}(0)=b_{n}$ for all $n \in \mathbb{N}_{+}$by comparing Fourier coefficients. Therefore $v_{n}(t)=b_{n} e^{-4 \pi^{2} n^{2} t}$ and

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-4 \pi^{2} n^{2} t} \sin (2 \pi n x)
$$

Note that our logic here is in fact to first reasonably guess a potential solution, so it remains to verify the above one is indeed a solution. We need to check uniform convergence and ability to differentiate the series term by term. In the case f is smooth (C^{2} or even weaker regularity is enough), this is not a problem, since the Fourier coefficients of u is the Fourier coefficients of f multiplied by a fast decreasing function $e^{-4 \pi^{2} n^{2} t}$. Similarly in the second situation we extend f to an even function
and write $f(x)=\frac{a_{0}}{2}+\sum_{n \geq 1} a_{n} \cos (2 \pi n x)$, then the solution is

$$
u(x, t)=\frac{a_{0}}{2}+\sum_{n \geq 1} a_{n} e^{-4 \pi^{2} n^{2} t} \cos (2 \pi n x) .
$$

Problem 4. If μ is a positive Borel measure on \mathbb{T}^{1} with $\mu\left(\mathbb{T}^{1}\right)=1$, show that $|\hat{\mu}(k)|<1$ for all $k \neq 0$ unless μ is a convex combination of the point masses at $0, m^{-1}, \ldots,(m-1) m^{-1}$ for some $m \in \mathbb{N}$, in which case $\hat{\mu}(k m)=1$ for all $k \in \mathbb{Z}$.

Proof. Let's first deal with the case where there exists $m \neq 0$ so that $\hat{\mu}(m)=1$. Notice that for any measurable set A we have

$$
\begin{aligned}
1 & =\int_{\mathbb{T}^{1}} e^{-2 \pi i m x} d \mu(x) \leq\left|\int_{A} e^{-2 \pi i m x} d \mu(x)\right|+\left|\int_{\mathbb{T}^{1}-A} e^{-2 \pi i m x} d \mu(x)\right| \\
& \leq \int_{A}\left|e^{-2 \pi i m x}\right| d \mu(x)+\int_{\mathbb{T}^{1}-A}\left|e^{-2 \pi i m x}\right| d \mu(x)=\mu(A)+\mu\left(\mathbb{T}^{1}-A\right)=1
\end{aligned}
$$

Hence $\left|\int_{A} e^{-2 \pi i m x} d \mu(x)\right|=\mu(A)$ for all A. If $\mu(A) \neq 0$, then we may write $\int_{A} e^{-2 \pi i m x} d \mu(x)=e^{i \theta_{A}} \mu(A)$ for some $\theta_{A} \in[0,2 \pi)$. Now suppose A, B are disjoint measurable with positive measures, then we claim $\theta_{A}=\theta_{B}$. Indeed, we have $e^{i \theta_{A}} \mu(A)+e^{i \theta_{B}} \mu(B)=e^{i \theta_{A \cup B}} \mu(A \cup B)$, therefore $\left|e^{i \theta_{A}} \mu(A)+e^{i \theta_{B}} \mu(B)\right|=$ $\left|e^{i \theta_{A \cup B}} \mu(A \cup B)\right|=\mu(A)+\mu(B)$, or equivalently $\left|e^{i \theta_{A}-i \theta_{B}} \mu(A)+\mu(B)\right|=\mu(A)+$ $\mu(B)$, it then follows $\theta_{A}=\theta_{B}$ since $\mu(A), \mu(B)>0$. Moreover we see that $\theta_{A \cup B}=\theta_{A}=\theta_{B}$.

Next we show if $x_{0} \in \operatorname{supp} \mu$, then $e^{-2 \pi i m x_{0}}=1$. Suppose $e^{-2 \pi i m x_{0}} \neq 1$, then $\sin \left(2 \pi i m x_{0}\right) \neq 0$, we may assume $\sin (2 \pi m x) \geq 2 \epsilon>0$. Let U be an open neighborhood of x_{0} on which $\sin (2 \pi m x) \geq \epsilon>0$. We would like to show $x_{0} \notin$ $\operatorname{supp} \mu$. Suppose for contradiction $x_{0} \in \operatorname{supp} \mu$, we have $\mu(U)>0$. We may shrink U so that $\mu(U)<1$, otherwise $\operatorname{supp} \mu=\left\{x_{0}\right\}$ and thus $1=\hat{\mu}(m)=e^{-2 \pi i m x_{0}}$ which is impossible. So now both U and $\mathbb{T}^{1}-U$ have positive measure, by previous discussion, we see $\theta_{U}=\theta_{\mathbb{T}^{1}-U}=\theta_{\mathbb{T}^{1}}=0$, i.e. $\int_{U} e^{-2 \pi i m x} d \mu(x)=\mu(U)$. However the imaginary part of $\int_{U} e^{-2 \pi i m x} d \mu(x)$ is $-\int_{U} \sin (2 \pi m x) d \mu(x) \leq-\epsilon \mu(U)<0$. Contradiction. This proves supp $\mu \subset\{0,1 / m, \ldots,(m-1) / m\}$.

So μ must be positive linear combination of point masses at $0,1 / m, \ldots,(m-$ $1) / m$, and the sum of coefficients is $\mu\left(\mathbb{T}^{1}\right)=1$. In this case for $x \in \operatorname{supp} \mu$, $e^{-2 \pi i m x}=1=e^{-2 \pi i k m x}$, so we have $\hat{\mu}(k m)=1$ for all $k \in \mathbb{Z}$. This finishes the proof for the case $\hat{\mu}(m)=1$.

In general, if $|\hat{\mu}(m)|=1$, then $\hat{\mu}(m)=e^{2 \pi i s}$. Let $\nu=e^{-2 \pi i s} \mu$, then $\hat{\nu}(m)=1$. Thus ν is a convex combination of point masses at $0,1 / m, \ldots,(m-1) / m$ and $\hat{\nu}(k m)=1$ for all $k \in \mathbb{Z}$. Therefore μ is a convex combination of point masses at $s, 1 / m+s, \ldots(m-1) / m+s$ and $\mu(k m)=e^{2 \pi i s}$ for all $k \in \mathbb{Z}$.

Problem 5. Show that if $\Delta\left(\mathbb{R}^{n}\right)$ is the set of finite linear combinations of point masses on \mathbb{R}^{n}, then $\Delta\left(\mathbb{R}^{n}\right)$ is vaguely dense in $M\left(\mathbb{R}^{n}\right)$.

Proof. We first note $C_{c}\left(\mathbb{R}^{n}\right)$ is contained in the vague closure of $\Delta\left(\mathbb{R}^{n}\right)$, because for any $f \in C_{c}, g \in C_{0}$ we have $\int f g$ is approximated by Riemann sum, so f is the vague limit of linear combination of point masses at the centers of cubes that covers $\operatorname{supp}(f)$. Therefore, the vague closure of $C_{c}\left(\mathbb{R}^{n}\right)$ is contained in the vague closure
of $\Delta\left(\mathbb{R}^{n}\right)$. It remains to show $C_{c}\left(\mathbb{R}^{n}\right)$ is dense in $M\left(\mathbb{R}^{n}\right)$. This can be proved in two steps. First, we notice $C_{c}\left(\mathbb{R}^{n}\right)$ is L^{1}-dense hence vaguely dense in $L^{1}\left(\mathbb{R}^{n}\right)$ thanks to Holder inequality. Second $L^{1}\left(\mathbb{R}^{n}\right)$ is vaguely dense in $M\left(\mathbb{R}^{n}\right)$, because for any $\mu \in M\left(\mathbb{R}^{n}\right), \mu$ is the limit of $\mu * \phi_{t} \in L^{1}$ for approximate identity $\left\{\phi_{t}\right\}$ since for any $g \in C_{0}\left(\mathbb{R}^{n}\right)$

$$
\mid \int g(x) \int \phi_{t}(x-y) d \mu(y) d m\left(x \mid \leq\|g\|_{\infty}\left\|\phi_{t}\right\|_{1}\|\mu\|<\infty\right.
$$

and thus by Fubini theorem

$$
\int g(x) \int \phi_{t}(x-y) d \mu(y) d m(x)=\iint g(x) \phi_{t}(x-y) d m(x) d \mu(y)=\int g * \tilde{\phi}_{t} d \mu
$$

Now that $g \in C_{0}$ hence uniformly continuous, $g * \tilde{\phi}_{t}$ is uniformly convergent to g, so $\int g\left(\mu * \phi_{t}\right) d m \rightarrow \int g d \mu$ as $t \rightarrow 0$.

